Decision Memo for Percutaneous Transluminal Angioplasty (PTA) of the Carotid Artery Concurrent with Stenting (CAG-00085R6) # **Decision Summary** The Centers for Medicare and Medicaid Services (CMS) has decided to make no changes to the national coverage determination (NCD) for percutaneous transluminal angioplasty (PTA) of the carotid artery concurrent with stenting (Medicare NCD Manual 20.7). The NCD for PTA of the carotid artery concurrent with stenting continues to provide coverage for the certain patient populations under specific conditions as described below. 1. Patients who are at high risk for carotid endarterectomy (CEA) and who also have symptomatic carotid artery stenosis > 70%. Coverage is limited to procedures performed using FDA approved carotid artery stenting systems and embolic protection devices; 2. Patients who are at high risk for CEA and have symptomatic carotid artery stenosis between 50% and 70%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7B3); 3. Patients who are at high risk for CEA and have asymptomatic carotid artery stenosis > 80%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7B3). CAS is only covered when used with an embolic protection device and is, therefore, not covered if deployment of the distal embolic protection device is not technically possible. CAS procedures performed on symptomatic patients at high risk for CEA with \geq 70% stenosis must be performed in facilities approved by CMS to perform CAS. The complete NCD language can be found in Appendix B of this decision memorandum. We are aware of other data that has yet to be published and strongly urge that publication at the soonest possible time. We will work with any requestor as soon as that data is published to determine the need for an expedited review and reconsideration. # Back to Top # **Decision Memo** TO: Administrative File: CAG-00085R6 Percutaneous Transluminal Angioplasty (PTA) of the Carotid Artery Concurrent with Stenting FROM: Steve Phurrough, MD, MPA Director, Coverage and Analysis Group Marcel Salive, MD, MPH Director, Division of Medical and Surgical Services Sarah McClain, MHS Lead Analyst Lawrence Schott, MD, MS Lead Medical Officer SUBJECT: Coverage Decision Memorandum for Percutaneous Transluminal Angioplasty (PTA) of the Carotid Artery Concurrent with Stenting DATE: October 14, 2008 #### I. Decision | The Centers for Medicare and Medicaid Services (CMS) has decided to make no changes to the national coverage determination (NCD) for percutaneous transluminal angioplasty (PTA) of the carotid artery concurrent with stenting (Medicare NCD Manual 20.7). The NCD for PTA of the carotid artery concurrent with stenting continues to provide coverage for the certain patient populations under specific conditions as described below. | |--| | 1. | | Patients who are at high risk for carotid endarterectomy (CEA) and who also have symptomatic carotid artery stenosis > 70%. Coverage is limited to procedures performed using FDA approved carotid artery stenting systems and embolic protection devices; | | 2. | | Patients who are at high risk for CEA and have symptomatic carotid artery stenosis between 50% and 70%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7B3); | | 3. | | Patients who are at high risk for CEA and have asymptomatic carotid artery stenosis > 80%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7B3). | | CAS is only covered when used with an embolic protection device and is, therefore, not covered if deployment of the distal embolic protection device is not technically possible. CAS procedures performed on symptomatic patients at high risk for CEA with \geq 70% stenosis must be performed in facilities approved by CMS to perform CAS. | | The complete NCD language can be found in Appendix B of this decision memorandum. | | We are aware of other data that has yet to be published and strongly urge that publication at the soonest possible time. We will work with any requestor as soon as that data is published to determine the need for an expedited review and reconsideration. | | | # **II. Background**Printed on 6/22/2012. Page 3 of 60 On December 14, 2007, CMS received a joint request from the American College of Cardiology (ACC), the Society for Cardiovascular Angiography and Interventions (SCAI), the Society of Vascular and Interventional Neurology (SVIN) and the Society for Vascular Medicine (SVM) to revise current Medicare policy to extend coverage to "patients who are at high risk for carotid endarterectomy (CEA) due to defined anatomic factors, and who have either symptomatic carotid artery stenosis of 50 - 69% (or greater) or asymptomatic carotid artery stenosis of 80%." The requestors define anatomic factors as: - Previous CEA with recurrent stenosis, - Prior radiation therapy to neck, - Previous ablative neck surgery (e.g., radical neck dissection, laryngectomy), - Surgically inaccessible carotid lesion located above cervical vertebra C2, - Common carotid artery lesion below the clavicle, - Contralateral vocal cord palsy, - Presence of tracheostomy stoma, - Contralateral internal carotid artery occlusion, - · Immobile neck, and - Severe tandem lesions. The requestors stated that "There is compelling clinical rationale and need for patients in the anatomic group defined above to have access to CAS. These patients do not have an acceptable surgical option, due to their anatomic conditions, which inherently preclude or severely limit safe surgical access." They also "recommend that CMS's new coverage policy mandate participation in robust data registries such as NCDR's CARE registry (see: http://www.accncdr.com/webncdr/CarotidStent/Default.aspx). High quality audited data generated by such registries will help CMS assess the wisdom of our requested coverage expansion and may provide some guidance for future decisions regarding coverage." # **III. History of Medicare Coverage** Over the past seven years, Medicare has expanded coverage for PTA and stenting of the carotid artery. Medicare first covered PTA of the carotid artery concurrent with stent placement in accordance with the Food and Drug Administration (FDA) approved protocols governing Category B Investigational Device Exemption (IDE) clinical trials and later in FDA required post approval studies (Medicare NCD Manual 20.7B2, B3). | March 2, 2008 | Initial 30-day public comment period closed. | |------------------|--| | June 11, 2008 | CMS received an additional request to "consider a requirement that the national society registries serve as the CAS outcomes reporting mechanism, with simultaneous discontinuation of the current CMS CD-based data submission system." | | July 31, 2008 | Proposed decision memorandum posted; 30-day comment period begins. | | October 14, 2008 | Final decision memorandum posted. NCD becomes effective. | #### V. FDA Status There are currently six carotid stent systems with Premarket Approval (PMA) approval by the FDA plus five distal filter embolic protection devices (EPDs) and one distal balloon occlusion (EPD) with FDA 510(k) clearance available for use in the common and internal carotid arteries. # VI. General Methodological Principles When making national coverage decisions, CMS evaluates relevant clinical evidence to determine whether or not the evidence is of sufficient quality to support a finding that an item or service falling within a benefit category is reasonable and necessary for the diagnosis or treatment of illness or injury or to improve the functioning of a malformed body member. The critical appraisal of the evidence enables us to determine to what degree we are confident that: 1) the specific assessment questions can be answered conclusively; and 2) the intervention will improve health outcomes for patients. An improved health outcome is one of several considerations in determining whether an item or service is reasonable and necessary. | A detailed account of the methodological principles of study design that the agency utilizes to assess the relevant literature on a therapeutic or diagnostic item or service for specific conditions can be found in Appendix A. In general, features or clinical studies that improve quality and decrease bias include the selection of a clinically relevant cohort, the consistent use of a single good reference standard, and the blinding of readers of
the index test, and reference test results. | |---| | Public comments sometimes cite the published clinical evidence and give CMS useful information. Public comments that give information on unpublished evidence such as the results of individual practitioners or patient are less rigorous and therefore less useful for making a coverage determination. CMS uses the initial public comments to inform its proposed decision. CMS responds in detail to the public comments on a proposed decision when issuing the final decision memorandum. | | VII. Evidence | | A. Introduction | | This section summarizes the evidence evaluating CAS for patients with symptomatic or asymptomatic carotid stenosis who exhibit "anatomic factors" potentially placing them at high surgical risk for CEA. It incorporates all evidence from prior decision memoranda regarding this issue. A summary of the body of evidence reviewed to date in developing this decision memorandum is available via the final decision memoranda released following th completion of each of the prior national coverage analyses (NCAs) for reconsiderations of the CAS national coverage determination. Although older age (> 80 years) is not an anatomical factor, a commenter suggested coverage modifications in this group, so we also reviewed new articles that addressed this population. | | Our present discussion of evidence reviewed focuses upon whether the body of evidence is sufficient to draw conclusions about health outcomes for CAS, as well as whether the available evidence is generalizable to Medicare patients. As in our prior reviews of CAS, the key outcomes of interest to CMS are the periprocedural (occurring during procedure or up to 30 days after) and long-term risk of stroke and death following CAS. | This NCA is focused on the anatomical factors that would make CEA relatively or explicitly contraindicated and for which CAS could be an alternative. While we will not discuss those circumstances where CAS is contraindicated, we encourage the stenting community to be very cognizant of the limitations of CAS and to consider these and other factors when selecting patients for the procedure. # **Questions** CMS analyzed the following questions for this decision memorandum: - Is the evidence sufficient to conclude that defined anatomic factors can be identified among patients with carotid stenosis that make CEA contraindicated? - Is the evidence sufficient to conclude that PTA with CAS improves health outcomes for patients in whom CEA surgery is contraindicated due to anatomic factors with either (a) symptomatic carotid artery stenosis ≥ 50% or (b) asymptomatic carotid artery stenosis ≥ 80%? #### **B.** Discussion of evidence reviewed # 1. Literature Search Because this is a reconsideration, CMS focused on new clinical research studies, technology assessments, guidelines and reviews published since the April 30, 2007 decision memorandum, but also considered literature addressing the patient populations under consideration which was published prior to the 2007 NCD. PubMed was searched and general keywords included carotid, stent, stenting, endarterectomy, revascularization, restenosis, anatomic factors and anatomical characteristics. New studies must have presented original data, examined primary health outcomes and been published in peer-reviewed English language journals. Abstracts were excluded. - 1. The technology must have final approval from the appropriate governmental regulatory bodies. CAS with or without EPD is a procedure and thus does not require U.S. Food and Drug Administration (FDA) approval. However, the devices used for CAS and for EPD require FDA approval. As of this writing, five manufacturers' stents are FDA approved and indicated specifically for use in carotid arteries. The FDA has mandated postmarketing studies for these devices, including longer follow-up for patients already reported to the FDA, and additional registry studies primarily to compare outcomes as a function of clinician training and facility experience. The devices are indicated for combined use of a stent and EPD to reduce stroke risk in patients at increased risk for perioperative complications from CEA who are symptomatic with ≥ 50% stenosis or asymptomatic with ≥ 80% stenosis. CAS with these devices for patients outside these indications is an off-label use." - 2. The scientific evidence must permit conclusions concerning the effect of the technology on health outcomes. Available evidence permits conclusions regarding periprocedural complication rates (particularly stroke or death) following CAS in patients of average risk and increased medical risk. Periprocedural stroke/death rates surpassed those established as clinically acceptable and associated with an overall net health benefit following CEA. There is limited evidence and a clinical rationale to suggest CAS may be beneficial in the group of patients at increased anatomic risk, but present evidence has not clearly differentiated outcomes for this subgroup according to symptomatic status. Thus, there is insufficient evidence to draw conclusions regarding patients at increased anatomic risk. A number of large ongoing trials will yield more evidence in the near future (e.g., "Carotid Revascularization Endarterectomy versus Stent Trial" [symptomatic and asymptomatic]; "International Carotid Stenting Study" [symptomatic]; and the "Asymptomatic Carotid Surgery Trial" ACT-1)." - 3. **The technology must improve the net health outcome.** Available evidence does not support concluding that CAS with EPD improves the net health outcome among patients at average or increased medical risk. Evidence regarding patients at increased anatomic risk is suggestive of benefit, but insufficient to draw conclusions." - 4. **The technology must be as beneficial as any established alternatives.** Available evidence does not support concluding that CAS with or without EPD is as beneficial as CEA for symptomatic patients at average risk or increased medical risk. Whether CAS with EPD is as beneficial as CEA for asymptomatic patients at average medical or anatomic risk cannot be determined because available evidence is insufficient to permit conclusions. There is no evidence comparing best medical therapy for symptomatic or asymptomatic patients at increased medical or anatomic risk, preventing conclusions." - 5. **The improvement must be attainable outside the investigational settings.** Whether CAS with EPD improves health outcomes has not yet been demonstrated in the investigational setting. Based on the above, use of carotid artery angioplasty and stenting with or without embolic protection of the cerebral circulation for patients with carotid artery stenosis does not meet the TEC criteria." Cochrane, 2007 In October 2007, Ederle et al. published the latest Cochrane Database of Systematic Review on "Percutaneous Transluminal Angioplasty and Stenting for Carotid Artery Stenosis. The review assessed the benefits and risks of CAS compared with CEA or medical therapy, and searched the Cochrane Stroke Group trials register (last searched 14 March 2007), the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 1, 2007), MEDLINE (1950 to March 2007), EMBASE (1980 to March 2007) and Science Citation Index (1945 to March 2007). It also contacted researchers in the field. Selection criteria included randomised trials of CAS compared with CEA or medical therapy for carotid stenosis. One review author independently applied the inclusion criteria, extracted data and assessed trial quality, and search results were validated by a second review author. For the main results, data were available from 12 trials (3227 patients) but not all contributed to each analysis. The Cochrane group's primary outcome comparison of any stroke or death within 30 days of treatment favored surgery (odds ratio (OR) 1.39, P = 0.02, not significant (NS) in the random-effects model). The following outcome comparisons favored CAS over CEA: cranial neuropathy (OR 0.07, P < 0.01); 30 day neurological complication or death (OR 0.62, P = 0.004, NS in the random-effects model, with significant heterogeneity). The following outcome comparisons showed little difference between CAS and CEA: 30 day stroke, myocardial infarction or death (OR 1.11, P = 0.57 with significant heterogeneity); stroke during long-term follow up (OR 1.00). Comparison between CAS with or without protection device showed no significant difference in 30 day stroke or death (OR 0.77, P = 0.42 with significant heterogeneity). Analysis of stroke or death within 30 days of the procedure in asymptomatic carotid stenosis showed no difference (OR 1.06, P = 0.96). In patients not suitable for surgery, there was no significant difference in 30 day stroke or death (OR 0.39, P = 0.09 with significant heterogeneity). The authors concluded that the data were difficult to interpret because trials were substantially heterogeneous (different patients, endovascular procedures, and duration of follow up) and five trials were stopped early, perhaps leading to an over-estimate of the risks of CAS. The pattern of effects on different outcomes did not support a change in practice away
from recommending CEA as treatment of choice for suitable carotid stenosis. Regarding research implications, the 2007 Cochrane review advised that the data support continued enrollment of patients within RCTs evaluating endovascular and surgical interventions, that randomization should continue in ongoing trials, and that facilities not participating in large multicenter trials randomize suitable patients locally (Ederle et al., 2007). # Schnaudigel et al., 2008 In June 2008, Schnaudigel and colleagues reported a systematic analysis of all peer-reviewed studies published between January 1990 and June 2007 describing occurrence of new diffusion-weighted imaging (DWI) lesions after CAS or CEA. In 32 studies comprising 1363 CAS and 754 CEA procedures, results showed incidence of any new DWI lesion was significantly higher after CAS (37%) versus CEA (10%) (P < 0.01). Similar results were obtained in a meta-analysis focusing on those studies comparing incidence of new DWÍ lesions after either CEA or CAS (OR, 6.1; 95% CI, 4.19 to 8.87; P < 0.01). Use of cerebral protection devices (33% with versus 45% without; P < 0.01), closed-cell designed stents during CAS (31% closed-cell vs 51% with open-cell stents; P < 0.01) and selective versus routine shunt use during CEA (6% vs 16%; P < 0.01) significantly reduced incidence of new ipsilateral DWI lesions. The authors described that the major risk for both CEA and CAS appeared to be the possibility of periprocedural embolic strokes attributable to release of debris during surgical or endovascular manipulation with distal embolization into the cerebral vasculature, as well as that the higher incidence of new DWI lesions (37% for CAS versus 10% for CEA) pointed to increased risk of periprocedural embolism during CAS largely related to manipulation of catheters, guidewires and sheaths in the supra-aortic vasculature, plus possibly a consequence of diagnostic angiography performed before CAS. Schnaudigel's group concluded that new DWI lesions occur more frequently after CAS than after CEA, and that DWI presently appears to be an ideal tool to compare and improve both interventions (Schnaudigel et al., 2008). #### 3. Internal technology assessment | CMS four | id no new | comparativ | e studies | powered for | or statistica | l significan | nce allowing | analysis | of the red | questors' | |-----------|-----------|-------------|-----------|-------------|---------------|--------------|--------------|----------|------------|-----------| | group of | "anatomic | factors," b | ut CMS di | d summari | ze 17 retros | spective of | bservational | studies | and one p | ostmarket | | registry. | | | | | | | | | | | # Evidence for use of CAS in patients with anatomical lesions making CEA potentially contraindicated # Friedell, et al., 2007 Friedell and colleagues reported a single-center, retrospective review of 44 consecutive patients who underwent 46 CAS procedures, including 34 (74%) carotid stents placed in asymptomatic (asx) patients, which were all performed by one interventional radiologist between February 1999 and July 2003. Arch aortography was performed, followed by carotid and intracranial arteriograms before and after stenting. Two cases each required two stents, and embolic protection devices (EPDs) were notably only used late in the series in three procedures. Mean age was 73 years (range, 56-87 years), including 25 males (57%) and 10 patients (23%) ≥ 80 years old. All patients had $\geq 80\%$ carotid stenosis and were considered anatomically or medically at high-risk for CEA, including 34 patients with prior CEA (28 asx), three irradiated neck (two asx), one prior CEA/irradiated neck (asx), one radical neck dissection (asx), one high lesion (asx) and six medical risk (three asx). Half of the 34 recurrent stenoses occurred < 3 years and half ≥ 3 years after the original CEA. Results showed no deaths at 30 days but one stroke (on day 26) due to an occluded ipsilateral carotid documented arteriographically after the patient became acutely hemiparetic, plus three periprocedural transient ischemic attacks (TIAs) - two occurring with use of EPDs - and an acute MI in one of the TIA patients. Duplex ultrasound scans were performed on 44 of 46 (96%) patients at mean follow-up of 40 months (range, 2-88 months). Two patients, both of whom had prior irradiation, developed three new 80-99% stenoses requiring three stents. The authors concluded that CAS in a community hospital is durable and can have 30-day stroke/mortality equivalent to CEA. A supplemental discussion section following the conclusion emphasized that 34 of 46 stents had been placed for recurrent stenosis (mostly in asymptomatic patients) and that their findings were not generalizable (Friedell et al., 2007). # Protack et al., 2007 Protack and colleagues examined a prospective database of patients undergoing CAS for significant atherosclerotic occlusive disease (ASOD) and radiotherapy-induced (XRT) occlusive disease. Twenty three (15%) patients were treated with CAS for XRT and 127 (85%) patients were treated with CAS for ASOD. All cause mortality at 30-days was 0% for the XRT group and 1% for the ASOD group (no statistical significance) and overall survival at 3 years was equivalent. As defined in the SAPPHIRE trial, there was no significant difference in major adverse event rates nor was there a significant difference in the 3-year neurologic event free rates (87% for XRT and 85% for ASOD). The XRT group has a significantly worse 3-year freedom from restenosis rate of 20% vs. 74% for the ASOD group (P < .05). The XRT group also experienced a significantly worse 3-year patency rate of 91% as compared to 100% for the ASOD group. Based upon these findings, the authors conclude that "CAS is equally effective in preventing recurrent symptoms in XRT patients as in ASOD patients," although the "XRT patients show increased rates of restenosis, reintervention, and occlusion." Protack and colleagues conclude that "CAS for radiation arteritis has poor long-term anatomic outcome and can present with late occlusions. These findings suggest that these patients require closer perioperative surveillance and raise the question of whether CAS is appropriate for carotid occlusive lesions caused by radiation arteritis" (Protack et al., 2007). #### CASES-PMS, 2007 Katzen and colleagues reported 30 day results for the "Carotid Artery Stenting with Emboli Protection Surveillance -Post Marketing Study" (CASES-PMS), which was initiated as a non-randomized, condition of approval study under an FDA investigational device exemption (IDE). This single-arm, industry-sponsored registry study examined whether physicians with varying carotid stent experience would obtain safety and efficacy outcomes as good as those from the pivotal "Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy" (SAPPHIRE) (Yadav et al., 2004) trial following participation in a comprehensive carotid stent training program. Patients at high surgical risk who were either symptomatic with $\geq 50\%$ stenosis or asymptomatic with ≥ 80% stenosis of the common or internal carotid artery received CAS with distal emboli protection. Physicians were qualified based on prior experience in CAS or following participation in a formal training program. The primary endpoint of major adverse events (MAE) at 30 days (death, MI, or stroke) was tested for noninferiority compared with an objective performance criterion (OPC) of 6.3% established from the stent cohort of the SAPPHIRE trial. Results showed the 30-day MAE rate was 5.0%, meeting the criteria for noninferiority to the prespecified OPC (95% CI [3.9%, 6.2%] P < 0.001). Asymptomatic patients (N = 1158, 78.2%) had similar outcomes to overall results (MAE 4.7%). Outcomes were similar across levels of physician experience, carotid stent volume, geographic location and presence/absence of training program. The authors concluded that utilizing a comprehensive training program, CAS by operators with differing experience in a variety of practice settings yielded safety and efficacy outcomes similar to those reported in the SAPPHIRE trial (Katzen et al., 2007). # Eskandari et al., 2007 Eskandari and colleagues reported a single-center, retrospective review of 269 CAS procedures performed on 264 patients from May 2001 to July 2006 that included 66 procedures following external-beam neck irradiation (N = 26) or CEA (N = 40). In this "hostile neck" group, 47 of 66 procedures (71%) were for asymptomatic \geq 80% stenosis. A variety of cerebral protection devices were used in 249 of 269 cases (93%). In the remaining 20 cases, devices were not yet available (15) or were unable to be safely delivered (5). In 37 cases, two stents were used due to target lesion length, tandem (ostial and bifurcation) lesions or stent malpositioning. Results showed no significant difference in the rate of restenosis or occlusion between hostile neck lesions (4.5%, 3 of 66) and the remaining group of de novo atherosclerotic lesions (2.0%, 4 of 203), but multiple patient characteristics (including age, sex, comorbidities, stent and embolic protection device type) exhibited significant differences between the groups. During mean follow-up of 16 ± 14 months (range, 1-70 months), two asymptomatic carotid occlusions were detected and those patients were subsequently managed medically. The other five patients with restenosis, repeat angioplasty with stenting (3 patients) or with angioplasty alone (2 patients) resulted in no periprocedural stroke or death. The authors concluded that early periprocedural CAS outcomes were similar in de novo lesions as in patients with a history of neck irradiation or CEA (Eskandari et al., 2007). BEACH, 2008 Iyer and colleagues' multicenter, single-arm "Boston Scientific EPI: A Carotid Stenting Trial for High-Risk Surgical Patients" (BEACH) study reported one year outcomes in high surgical risk patients
with carotid artery stenosis. This non-randomized, industry-sponsored registry study enrolled 480 "pivotal" patients (i.e., 480 of 747 total patients in the trial and excluding 189 patients from the roll-in group and 78 patients in the bilateral registry group) who were candidates for carotid revascularization but considered high surgical risk due to pre-specified anatomic criteria and/or medical comorbidities. The primary endpoint (all stroke, death, or Q-wave MI through 30 days; non-Q-wave MI through 24 hours; and ipsilateral stroke or neurologic death through one year) was compared with a proportionally weighted OPC of 12.6% for published surgical endarterectomy results in similar patients, plus a pre-specified noninferiority margin of 4%. Results among the pivotal patients showed 41.2% were at high surgical risk due to comorbid risk factors and 58.8% due to anatomic risk factors; 76.7% were asymptomatic with flow-limiting carotid stenosis > 80%. At one year, the composite primary endpoint occurred in 8.9% (40 of 447), with repeat revascularization rate of 4.7%. Within this group, age ≥ 75, comorbid risk category, diabetes and symptomatic status were associated with 1-year morbidity and mortality, although the magnitude of the effect was not reported. With an upper 95% confidence limit of 11.5% for the primary composite endpoint, study results met prespecified criteria for noninferiority relative to a calculated OPC plus noninferiority margin (16.6%) for historical surgical CEA outcomes in similar patients (p < 0.0001 for noninferiority). The authors concluded that CAS with embolic protection is noninferior to CEA at one year in high surgical risk patients. The BEACH registry study was not powered to show statistical significance for unfavorable anatomical characteristics as defined by either anatomic risk only or both anatomic and comorbid risks or a combination of the two (Iyer et al., 2008). #### CABERNET, 2008 Hopkins and colleagues' multicenter, single-arm "Carotid Artery Revascularisation Using the Boston Scientific EPI FilterWire EX/EZ and the EndoTex NexStent" (CABERNET) study reported one year outcomes in high surgical risk patients with carotid artery stenosis. This non-randomized, industry-sponsored registry examined 454 patients -288 (63.4%) with anatomic-only risk factors, 89 (19.6%) with comorbid-only risk factors, and 77 with both anatomic and comorbid risk factors - including 110 patients (24.2%) who were symptomatic at entry with ≥ 50% angiographic carotid stenosis and 344 patients (75.8%) who were asymptomatic at entry with ≥ 60% angiographic carotid stenosis. The study was designed with two primary endpoints: 1) the one year major adverse event (MAE) rate defined as any death, stroke or MI as compared to an OPC of 12.1% plus a prespecified noninferiority margin or "delta" of 4%; and 2) the composite rate of 30-day MAE plus late (31-365 days) ipsilateral stroke. Excluding 16 patients in the denominator, results showed the first primary endpoint - the one year MAE rate - equaled 11.6% (51/438), which was noninferior to the OPC of 12.1% (95% upper CI of 14.5% versus OPC plus delta of 16.1%, P = 0.005). Excluding 30 event-free patients with insufficient follow-up from the denominator, the second primary endpoint - the composite rate of 30-day MAE plus late ipsilateral stroke - was 4.7% (20/424) with a 95% upper CI of 6.8%. At one year there was 4.3% mortality, 5.0% stroke and 4.1% MI; and late ipsilateral stroke was 0.7%. Based on "historical controls," the authors concluded that CAS was noninferior to "traditional CEA" at one year in high surgical risk patients. There were no significant differences in one year outcomes between the anatomic and comorbid high-risk groups. The CABERNET registry study was not powered to show statistical significance for unfavorable anatomical characteristics as defined by either anatomic risk only or both anatomic and comorbid risks or a combination of the two (Hopkins et al., 2008). Evidence on CAS in patients > 80 years old Chiam et al., 2008 Chiam and colleagues conducted a single center, nonrandomized analysis of CAS in elderly patients. The study examined 153 CAS procedures performed from July 2003 through October 2007 on 142 patients age 80 and above. The patients were considered for CAS if they had symptomatic stenosis ≥ 50% or asymptomatic stenosis ≥ 70%. Patients were considered not suitable for CAS if they had reduced cerebral reserve, "if lesion severity did not meet angiographic criteria, or if adverse arch or vessel anatomy was identified." The authors define adverse arch or vessel anatomy as "excessive vascular tortuosity (arch or carotid artery) and heavy concentric carotid lesion calcification." Out of the 153 CAS procedures performed, 114 (74.5%) were in patients with asymptomatic lesions and 39 (25.5%) in patients with symptomatic lesions. In hospital any stroke and death rates were 5.1% in symptomatic patients and 2.6% in asymptomatic patients, for an overall rate of 3.3%. The 30 day any stroke and death rate was also 3.3%, with rates of 5.1% in symptomatic patients and 2.6% in asymptomatic patients. The authors state that "these results compare favorably to comparable CEA studies in elderly patients which had adverse event rates ranging from 1.1 to 6.8%." They conclude that CAS "in the elderly can be performed with low adverse event rates comparable to those achieved in a younger population" (Chiam et al., 2008). #### Lam et al., 2007 Lam and colleagues retrospectively reviewed the impact of increasing age on anatomic factors and complications in 135 carotid stenting procedures performed in 133 patients, which included 87 (65%) men, 46 (35%) women and 37 (28%) patients > 80 years old. Digital subtraction angiograms for each patient were evaluated by two independent observers blinded to patient identifiers, and anatomic characteristics - including aortic arch elongation, arch calcification, arch vessel origin stenosis, common and internal carotid artery tortuosity, treated lesion stenosis, calcification and length - impacting the performance of CAS were assessed as favorable or unfavorable. Postoperative events were defined as MI, stroke and death. Results showed patients > 80 years old had increased prevalence of unfavorable arch elongation (P = 0.008), arch calcification (P = 0.003), common carotid or innominate artery origin stenosis (P = 0.006), common carotid artery tortuosity (P = 0.0009), internal carotid artery tortuosity (P = 0.019), and treated lesion stenosis (P = 0.007). No significant difference was found for treated lesion calcification or length. Perioperative cerebrovascular accidents occurred in four patients (3.0%; three no residual deficit, one residual deficit), MI in three patients (2.2%), and one death (0.8%) secondary to hemorrhagic stroke. Combined stroke, MI and death rate for the entire study population was 3.7%, which was significantly increased (P = 0.012) in patients > 80 years old (10.8%) compared to those < 80 years old (1%). Lam et al. concluded that patients > 80 years had a higher incidence of anatomy increasing technical difficulty of performing CAS and that this increase in unfavorable anatomy might be associated with CAS complications. The authors acknowledged the relatively small number of patients treated and the infrequency of neurologic events limiting their ability to demonstrate statistically significant associations between unfavorable anatomic characteristics and neurologic complications. While additional limitations included the qualitative assessment of arterial anatomic features and that CAS patient selection was not randomized, Lam and colleagues cautioned that the presence of unfavorable anatomy warrants serious consideration during workup of patients being evaluated for carotid stenting (Lam et al., 2007). Sayeed et al., 2008 Sayeed and colleagues reported on 421 patients who underwent 429 CAS procedures between June 1996 and June 2005 for symptomatic or asymptomatic carotid stenosis who met minimal review criteria for availability of preoperative angiographic data and follow-up records including pre-procedural, intra-procedural and immediate post-procedural evaluation as well as 30 day follow-up visit. Demographic data and procedural variables were recorded, including use of cerebral protection device. Angiograms were reviewed for lesion length, percent stenosis, ostial involvement, ulceration, calcification and occlusion of the contralateral common or internal carotid artery. Neurologists evaluated patients before and ≤ 24 hours after CAS, and periprocedural stroke and 30 day adverse event rates (stroke, MI and death) were recorded. Results showed periprocedural all-stroke rate was 3.7%. Octogenarians had significantly higher incidence of 30 day adverse events (10% versus 3.8%; P = 0.029), and patients with lesions ≥ 15 mm had 17% periprocedural stroke and 19.1% 30 day adverse events. Incidence of periprocedural stroke was significantly increased for lesions \geq 15 mm (8/47, 17% versus 8/382, 2.1%; P < 0.001) and for ostial centered lesions (11/154, 7.1% versus 5/275, 1.8%; P = 0.007). Multivariate regression identified lesion length ≥ 15 mm (OR, 6.38; 95% CI, 35 to 17.29) and ostial involvement (OR, 3.12; 95% CI, 3.12 to 8.36) as independently associated with 30 day stroke rate. Lesion calcification, ulceration, degree of stenosis, and presence of contralateral occlusion were not associated with adverse outcomes. Use of cerebral protection devices studied separately in 241 patients (56%) did not change observed correlations between angiographic characteristics and adverse procedural events. The authors concluded that angiographic characteristics such as long stenotic lesions (≥ 15 mm) and involvement of the internal carotid ostium predicted a higher risk of adverse outcomes, and that the indication for CAS in such patients should be carefully evaluated (Sayeed et al., 2008). ####
Velez et al., 2008 Velez and colleagues analyzed 126 CAS procedures performed between January 1994 and December 2007 at the Ochsner Clinic Foundation's Heart and Vascular Institute. These procedures were performed on 118 patients ≥ 80 years old. Patients were treated if they had symptomatic carotid stenosis ≥ 50% or asymptomatic stenosis > 80%. Patients were excluded from undergoing CAS if they had excessive tortousity of the aortic arch and cervical vessels, circumferential target lesion calcification, visible intravascular thrombus, and occlusive angiographic "string" sign, a recent disabling stroke, significant dementia, and/or intolerance to antiplatelet therapy. The authors define procedure success as a final diameter stenosis < 50% compared to the reference diameter according to NASCET methodology. The primary endpoint was in hospital composite incidence of major adverse cardiac and cerebral events (MACCE) and included death, stroke and MI. The secondary endpoints were in hospital death, stroke and MI as well as 30 day MACCE. The study accomplished 100% procedure success and in hospital and 30 day MACCE rates of 1.6% and 2.7% respectively. Symptomatic patients had an in hospital MACCE rate of 4% and, for those in whom follow up was possible, a 30 day MACCE rate of 7.3%. No MACCE were reported in asymptomatic patients. The authors state that their results "are consistent with other reports demonstrating that a low complication rate of CAS can be obtained in octogenarians by experienced operators who carefully select their patients." They conclude that the data demonstrates "that CAS can be safely performed in the very elderly patients, \geq 80 years of age" (Velez et al., 2008). #### **Evidence on CEA with anatomical risk factors** #### Rouleau et al., 1999 Rouleau and colleagues examined 853 patients who underwent angiogram between January 1994 and June 1996 for carotid occlusive disease. Of these patients, 66 were found to have carotid artery tandem lesions and 48 of these 66 patients underwent CEA. Eight adverse postoperative events occurred in seven of the patients who underwent CEA, which included 3 cerebral infarctions and 2 MIs that were resolved within 90 days, 2 instances of severe cranial nerve palsy persistent beyond 90 days and 1 death due to MI. The authors noted that "It is not apparent that complications occurred at a higher rate in perioperative period in patients undergoing endarterectomy with tandem lesions" and conclude that "The presence of a tandem lesion infrequently alters the surgeon's decision to perform an endarterectomy" (Rouleau et al., 1999). Printed on 6/22/2012. Page 17 of 60 # Rockman et al., 2002 Rockman (2002) conducted a retrospective review of a prospectively compiled computerized database of all primary CEAs performed on 2420 patients between 1985 and 1999 by the Division of Surgery at the New York University Medical Center. The review compared results of CEAs performed in patients with carotid contralateral occlusion (CO) (14%) to results from CEA patients with patent contralateral arteries. The authors found no significant differences in perioperative MI, neurologic deficit and mortality between the two patient groups. In asymptomatic patients, no difference between the groups was seen in the rate of perioperative neurologic events (1.8% for CO cases; 1.9% for non-CO cases). Symptomatic patients also showed no significant difference in the rate of perioperative neurological events (3.7% for CO cases; 2.2% for non-CO cases; P = 0.2). The authors also found no significant difference between asymptomatic and symptomatic cases in perioperative mortality related to CO. Rockman and colleagues concluded that "the presence of a CO does not appear to significantly increase the perioperative risk of CEA...CEA can be performed safely in patients with CO, which should not be considered a high-risk condition for surgery in favor of angioplasty and stenting" (Rockman et al., 2002). # Reed et al., 2003 This retrospective analysis of 1370 CEAs performed from 1990 to 1999 examined the influence of numerous risk factors that often cause patients to be excluded from trials on CEA outcome at Brigham and Women's Hospital. The eight risk factors examined included age > 80, congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), renal failure, contralateral carotid artery occlusion, recurrent ipsilateral carotid artery stenosis, ipsilateral hemispheric symptoms within 6 weeks, and recurrent coronary artery bypass graft (CABG). Of the eight risk factors studied, only contralateral occlusion was found to be a predictor of poor outcome (P = 0.01). Five (6.7%) of the 75 patients with contralateral carotid occlusion, had adverse perioperative outcome (1 death, 1 disabling stroke, 3 nondisabling stroke). Patients with contralateral carotid occlusion as compared to patients without contralateral carotid occlusion had significantly diminished survival rates at 2 years (P < 0.046) and 5 years (P < 0.004). The authors conclude that "Of the defined preoperative variables examined in this study, only one, contralateral carotid artery occlusion, was predictive of adverse perioperative events after CEA" (Reed et al., 2003). #### Rockman et al., 2004 This retrospective review of a prospectively compiled database was performed to examine the impact of CAS on the management and outcome of recurrent stenosis. From a registry of patients treated for carotid disease, 105 procedures were performed from 1992 to 2002 for RCS and the data were divided into two time periods: through 1998, 77 reoperations before CAS was introduced at their institution and from 1999 through 2002, 12 reoperations and 16 CAS procedures performed for RCS. Perioperative stroke rates were higher in the later time period, but not significantly (7.2% vs. 5.2%, p = NS). Overall, the risk of perioperative stroke was the same for reoperation (5/89) and CAS (1/16) (5.6% vs. 6.3%, p = NS). Although not statistically significant, there was a trend toward a higher risk of perioperative stroke for patients treated with reoperation during the latter time period (8.3% vs. 5.2%, p = NS). They suggest that during later time period, CAS was most likely to be used in asymptomatic patients (68.6% vs. 41.7%, p = NS) with early (<3 years) RCS (87.5% vs. 41.7%, p = 0.01). They conclude, "Contrary to suggestions that CAS might improve the management of RCS, a review of our data shows the overall risk of periprocedural stroke to be no better since CAS has become available. The bias for using CAS for asymptomatic myointimal hyperplastic lesions, and reoperation for frequently symptomatic late recurrent atherosclerotic disease, makes direct comparisons of the two techniques for treating RCS difficult. It is expected that the overall risk for redo carotid surgery will increase, as fewer low-risk patients will be receiving open procedures. However, the increased risk among symptomatic patients undergoing reoperation suggests that endovascular techniques should be investigated among this group of cases as well." # Hill et al., 1999 Hill (1999) reported that re-do CEAs could be safely performed with a minimum of morbidity and mortality, and in their series of 390 carotid operations, procedure-related stroke-death rate was 0.8%. There were no differences between the stroke-death rates after primary CEA (N =350, 42% asymptomatic) and reoperation (N = 40, 50% asymptomatic), and there were no postoperative deaths, strokes or permanent cranial nerve deficits in patients operated for recurrent stenosis. They postulated that early restenosis [<24 months] is associated with myointimal hyperplasia and that late restenosis is related more to the development or progression of atheromatous plaque. # Jain et al., 2007 Jain and colleagues reported a retrospective review of 80 patients (46 male; mean age 64.1 years) with asymptomatic > 80% recurrent carotid stenosis (N = 49) or symptomatic > 80% stenosis (N = 32) who underwent a total of 83 reoperations under general anesthesia in a single community hospital setting between March 1988 and May 2005. The initial CEA used primary closure in 60 patients and prosthetic patch in 23. Results showed mean recurrence at 23.3 months in 33 patients with myointimal hyperplasia, 105.4 months in 29 with recurrent atherosclerosis, and 61.4 months in 19 with both hyperplasia and atherosclerosis. No perioperative strokes or deaths occurred, but one patient died from cardiac complications following combined reoperative CEA and coronary artery bypass grafting. Operative morbidity included reversible nerve injury (N = 5) and irreversible recurrent laryngeal nerve injury (N = 1). During follow-up of 3-153 months (mean 50.9 months) carotid occlusion resulted in one mild ipsilateral stroke and one non-hemispheric stroke. Eight patients required reoperation (mean 53.4 months), seven of whom were hypertensive. Long term follow-up at 153 months (12.75 years) showed 98.67% hemispheric stroke free rate and 95.85% all-stroke free rate. Patients on statins (P = 0.0042) and combined statin and aspirin (P = 0.032) had significantly increased interval between primary and secondary operation, and increased age correlated with decreased time to reoperation (P < 0.0001). The authors concluded reoperative CEA using standard vascular techniques was safe, effective and durable to prevent strokes in long term follow-up, that reoperative CEA should remain the mainstay of treatment when secondary intervention is required, and that statins had salutary effect on procedural durability (Jain et al., 2007). #### Corriere et al., 2008 Corriere and colleagues reported a single-center, retrospective review of 259 patients (99.3% male) who underwent a total of 279 consecutive CEAs between January 1999 and August 2004 to determine the proportion of CEA patients who would be categorized as high risk by current criteria, characterize their preoperative
angiograms, and determine potential technical challenges of CAS. Mean patient age was 68.3 ± 9.2 years (range 46-86), and 22 patients (7.9%) were > 80 years of age. The indication for CEA was asymptomatic stenosis in 159 patients (57%). Of the remaining 120 symptomatic patients, 34.8% had transient ischemic symptoms and 8.2% had permanent stroke as their respective indications for CEA. Four CEAs (1.4%) were performed for recurrent stenosis, 2 (0.7%) for neck irradiation or dissection, and 2 (0.7%) for contralateral laryngeal nerve injury. Published guidelines defining high risk for CEA were applied, and preoperative angiograms were examined for technical limitations to CAS. Of the 279 CEAs performed, 99 (35.5%) would have met one or more high-risk criteria, including 20 patients (7.2%) who had multiple high-risk criteria. Overall risks of perioperative stroke, MI and death were respectively 1%, 2.2% and 0.4%, for a combined major complication rate of 3.3%, but no major complication occurred in the 22 CEAs performed in patients > 80 years old. Of the 233 CEAs (83.5%) with preoperative angiograms available for review, the distribution of aortic arch configurations included types I (3.5%), IIa (39.5%), IIb (54.5%) and III (1.3%). Arch anomalies were observed in 35 patients (15.5%), and there were 171 patients (73.4%) with at least one angiographic finding that would have potentially increased technical difficulty of CAS. The authors noted that their observed frequency of adverse anatomic factors, while consistent with a prior report by Lin et al. (2005), was discordant with several reported high technical feasibility rates for CAS. Corriere and colleagues concluded that although a proportion (35%) of high risk CEA patients might be considered potential candidates for CAS, technically challenging factors based upon preoperative angiograms (some of which limit ability to perform CAS) are common and need to be anticipated when planning CAS (Corriere et al., 2008). # De Borst et al., 2008 De Borst and colleagues reviewed a consecutive series of 73 redo CEA procedures in 72 patients (57% male) with mean age of 66 years (range, 49-81 years). Mean interval between CEA and reoperation was 53 months (range, 8-192 months). Indications included symptomatic restenosis in 28 patients (38%), and patch angioplasty was performed in 62 patients (85%). Outcome measures included perioperative and late stroke and death, plus development of secondary restenosis. Results showed no perioperative deaths or strokes, and during mean follow -up of 52 months (range, 12-144 months) the Kaplan-Meier cumulative survival was 85% at five years. At five years, the cumulative rate of freedom from all strokes was 98% and freedom from ipsilateral stroke was 100%. After secondary procedures, re-recurrent stenosis > 50% occurred in 10 patients (13.7%) and cumulative freedom from re-restenosis (> 50%) was 85% at five years. Five patients (7%) received tertiary carotid reconstructions. The authors concluded that repeat CEA for recurrent stenosis could be performed safely with excellent long-term stroke protection (DeBorst et al., 2008). | 4. | MedCAC | | |----|--------|--| |----|--------|--| No Medicare Evidence Development & Coverage Advisory Committee (MedCAC) was convened for this issue. #### 5. Clinical Guidelines Screening for Carotid Artery Stenosis: An Update of the Evidence for the U.S. Preventive Services Task Force (USPSTF) Pertinent to whether the general adult population should be screened for asymptomatic carotid stenosis, the USPSTF (December 2007) concluded that for individuals with asymptomatic carotid artery stenosis there is presently moderate certainty that benefits of carotid screening do not outweigh harms.3 This "D" recommendation means the USPSTF recommends against the service and discourages screening for carotid stenosis in routine clinical practice. 4 The USPSTF noted that good evidence indicated that although stroke is a leading cause of death and disability, a relatively small proportion of all disabling, unheralded strokes is due to carotid artery stenosis. Regarding the benefits of detection and early intervention, the USPSTF found that good evidence indicated that in selected, high-risk trial participants with asymptomatic severe carotid stenosis, CEA by selected surgeons reduced the five year absolute incidence of all strokes or perioperative death by approximately 5%. Those benefits, however, would be less among asymptomatic people in the general population, and for the general primary care population, the benefits were judged to be no greater than small. In a supporting article in the Annals of Internal Medicine, the USPSTF reiterated that the proportion of all strokes attributable to previously asymptomatic carotid stenosis was low. Data sources included MEDLINE and Cochrane Library (January 1994 to April 2007), recent systematic reviews, reference lists of retrieved articles and suggestions from experts. Thirty day stroke and death rates from CEA varied from 2.7-4.7% in RCTs, and higher rates were reported in observational studies. Regarding limitations of the published literature, the USPSTF noted the body of evidence was inadequate to stratify people into categories of risk for clinically important carotid stenosis (Woolf et al., 2007). # Society for Vascular Surgery (SVS) Guidelines In August 2008, the SVS published clinical practice guidelines for management of atherosclerotic carotid artery disease (Hobson et al.). Committees appointed by the SVS commissioned the Knowledge and Encounter Unit, Mayo Clinic, Rochester, MN to search for and conduct new systematic reviews to answer specific questions. The SVS used the GRADE system for their recommendations with GRADE 1 designated as a strong recommendation and GRADE 2 as a weak recommendation. Using GRADE assignments enabled the authors to incorporate their own values regarding the treatment of carotid artery disease. In addition to identifying the strength of the recommendation with GRADE assignments, the SVS also identified the quality of evidence as high, moderate, low and very low quality. Their recommendations are as follows: "Strong Recommendations + High Quality Evidence: - a) We recommend optimal medical therapy without revascularization in symptomatic patients with <50% stenosis. - b) We recommend optimal medical therapy without revascularization in asymptomatic patients with <60% stenosis - c) We recommend carotid endarterectomy plus optimal medical therapy in symptomatic patients with $\geq 50\%$ carotid stenosis. - d) We recommend carotid endarterectomy plus optimal medical management in asymptomatic patients with \geq 60% stenosis and low perioperative risk. Weak Recommendation + Low Quality Evidence: - e) We suggest carotid stenting as a potential alternative treatment to carotid endarterectomy in symptomatic patients with $\geq 50\%$ stenosis and high operative perioperative risk. - f) We suggest that carotid artery stenting is inappropriate for asymptomatic patients with carotid artery stenosis. Possible exceptions may include patients with acceptable medical risk who present with severe carotid artery stenoses (≥80%) and high anatomic risk for carotid endarterectomy (as defined above) but with compelling anatomy for stenting." | High anatomic risk is defined in the article (as referenced in Recommendation f) as "(1) previous CEA with recurrent stenosis; (2) prior ipsilateral radiation therapy to neck with permanent skin changes; (3) previous ablative neck surgery (eg, radical neck dissection, laryngectomy); (4) common carotid artery stenosis below the clavicle; (5) contralateral vocal cord paralysis; and (6) presence of a tracheostomy stoma." | |--| | Hobson et al. also discussed issues on which committee members were unable to reach consensus which included the role of CAS in asymptomatic patients, however they agreed that data supporting CAS in these patients was of poor quality due to the absence of a medical control group. Other issues on which consensus was not reached were the details of the technical performance of CEA and CAS and optimal cerebral monitoring and protection during CEA or the preferred patch for carotid closure. The authors also referenced the great variability among patients which causes application of guidelines to be difficult (Hobson et al., 2008). | # 6. Professional Society Position Statements In addition to the public comments CMS received regarding the reconsideration request submitted by the ACC, SCAI, SVIN and SVM, CMS received a request from the Society for Vascular Surgery (SVS), on June 4, 2008, to mandate the use of national CAS registries for all CMS approved CAS facilities. In their letter, available via the tracking sheet for this reconsideration, the SVS states that they "are concerned that the CMS-required CAS data elements do not take full advantage of the meaningful opportunity brought about by the NCD mandate to report outcomes because those elements lack sufficient detail to perform a thorough risk-adjusted analysis." The SVS recommends that CMS require "that national society registries serve as the CAS outcomes reporting mechanism, with simultaneous discontinuation of the current CMS CD-based data submission system." The SVS also requests that "the reporting requirements be
extended beyond the initial hospitalization to at least 30 days and potentially to 12 months since CAS procedures have event rates documented to occur after hospital discharge." This additional request is addressed below in the analysis section of the decision memorandum. # 7. Expert Opinion Under "Controversies in Cardiovascular Medicine" in the October 2, 2007 issue of *Circulation*, thought leaders in the field debated the pros and cons of carotid stenting and ideal trial designs and investigations for future clinical trials. Samuelson, et al. (2007) concluded: During the 30-day public comment period following the release of the proposed decision memorandum (PDM), CMS received 49 comments. The comments were varied in content and more closely divided in support of and in opposition to the PDM. Responses to the public comments are presented in italics throughout the summary section below. A complete list of references cited by commenters is available in the appendices. During the initial 30-day public comment period, CMS received 88 comments. A summary of these comments is provided in the PDM. #### Comments with Evidence #### CAS vs. CEA Yadav et al., 2004; Gray et al., 2007; Gray et al., 2007; Gray et al., 2006; Safian et al., 2006; Hopkins et al., 2008; Katzan et al., 2007; White et al., 2006 One commenter states that these studies have "unequivocally shown that CAS is not inferior to CEA" to support One commenter states that these studies have "unequivocally shown that CAS is not inferior to CEA" to support an expansion of coverage. Gray et al., 2007; Gray et al., 2007; Safian et al., 2006; Hopkins et al., 2008; Katzan et al., 2007; White et al., 2006; Gurm et al., 2008; Gurm et al., 2007; Iyer et al., 2008 One commenter asserts that these studies show that CAS "in patients at increased risk for perioperative surgical complications offers comparable, if not superior outcomes to those obtained with CEA." #### CMS Response The majority of these studies do not specifically address outcomes for the anatomic high risk patient population under consideration. While Iyer and colleagues and Hopkins and colleagues address anatomic high risk patients in BEACH and CABERNET respectively, neither study was powered to show statistical significance according to anatomic characteristics. #### **CEA Risks and Outcomes** Yadav et al., 2004; Hobson et al., 2008 One commenter contends that data suggests that a significant number of Medicare beneficiaries undergo CEA even though they are at high risk for surgery and surgery in these patients is associated with higher adverse event rates. This commenter references Yadav and colleagues (2004) to note that CMS does not address that the 30-day death/stroke/MI rates for CAS are about half the rate for CEA (4.8% vs. 9.8% respectively). #### Ouriel et al., 2001 One commenter suggests that while this study is cited in the evidence review, CMS does not consider the implications – higher adverse outcome rates - for anatomic high risk patients. # Narins and Illig, 2006 One commenter cites this study which recommends that certain anatomic high risk factors would lend themselves to CAS if intervention is warranted to support an expansion of coverage. Brahnmanandam et al., 2008; Ringleb et al., 2008 One commenter cites these studies which show CAS to be associated with a higher 30-day risk of stroke and death as compared to CEA. # CMS Response High adverse event rates due to CEA are not sufficient to advance coverage of CAS in anatomic high risk patients. In other words, evidence of potential risk of surgery for patients at high risk does not logically demonstrate that a different procedure (CAS) would automatically be reasonable and necessary to treat those patients. An expansion of coverage is not warranted without adequate evidence establishing the appropriateness of CAS in anatomic high risk patients. We would prefer evidence that demonstrates the achievement of the AHA 3% and 6% thresholds as suggested in peer-reviewed published data and professional society guidelines. # **Outcome Thresholds** Beebe et al., 1989 One commenter contends that the AHA outcome thresholds of 3% for asymptomatic patients with carotid stenosis and 6% for symptomatic patients with carotid stenosis were set arbitrarily and acknowledged by the authors that they would likely change and therefore are inappropriate to use in making this coverage determination. ACAS 1995; NASCET 1991; Barnett et al., 1998; Rothwell et al., 2003; ACST 2004 One commenter cites these studies to refute the use of the AHA 3% and 6% outcome thresholds because they were established for non-high risk CEA patients. This commenter contends that CMS' application of these thresholds to data from high risk patients holds CAS to a more stringent standard than CEA and requires inconsistent levels of evidence for different procedures. BEACH; CABERNET Printed on 6/22/2012. Page 25 of 60 One commenter asserts that although CMS should not universally apply the 3% and 6% thresholds to carotid interventions, outcomes from these studies met the thresholds. CMS Response CMS believes that it is reasonable to use the 3% and 6% thresholds for CAS patients despite the difference in patient population upon which the thresholds were originally established. As noted previously, this range of < 3% and < 6% has been recommended by the American Heart Association. CMS does not usually develop and release absolute thresholds or benchmarks to be applied in determining when a treatment is reasonable and necessary under section 1862(a)(1)(A), but considers the unique evidence in each record. With respect to CAS, for patients with specific anatomic conditions, we rely on the professional community to ensure that appropriate outcome measures are established. We recognize that medical science is constantly evolving, but must make our decisions based on the best evidence available at the time of analysis. Therefore, CMS will continue to utilize the widely referenced and purportedly met (albeit in unpublished data) AHA thresholds of 3% and 6% for CAS outcomes. With respect to BEACH and CABERNET, as noted above, neither was powered to show statistical significance for anatomic characteristics. Massop et al., 2008 SVS meeting presentation One commenter cites data from the SAPPHIRE WW registry that was presented at the June 2008 SVS meeting to demonstrate that the AHA 3% and 6% thresholds have been met which supports an expansion of coverage as requested. This commenter also notes that CMS did not consider these data in the analysis. CMS Response Because these data were presented at a professional society meeting and are not peer reviewed and available to the public, CMS considers them to be of less weight and therefore not rigorous enough to justify an expansion of coverage. # **Durability and Generalizability of CAS** Gurm et al., 2008; Katzan et al., 2007; Yadav et al., 2004 One commenter states that these studies demonstrate the generalizability of CAS as results were replicated across the country and by physicians with varying experience levels. Gurm et al., 2008 Two commenters cite the SAPPHIRE 3 year results which demonstrate the durability of CAS in high surgical risk patients. Printed on 6/22/2012. Page 26 of 60 Durability of CAS in the overall population of CAS patients does not address specific concerns and questions regarding the patient subpopulation with specific anatomic high risk factors under consideration in this analysis. #### **Society Agreement and Recommendations** Hobson et al., 2008; Sacco et al., 2006 One commenter cites these guidelines, SVS and AHA/ASA respectively, to assert that they are consistent with each other and demonstrate agreement between specialty societies regarding the appropriate use of CAS. # AHA Council on Stroke, 1995 One commenter cites recommendations from this article noting that they are close to the request for coverage and therefore coverage should be expanded to the requested patient population. ## White et al., 2006; Hopkins et al., 2008 One commenter contends that the definitions for anatomic high risk in BEACH and CABERNET were in line with definitions agreed upon by specialty societies in 97% and 56% of patients respectively, demonstrating general agreement in anatomic risk factors. # Stoner et al., 2006; Stoner et al., 2005 One commenter cites these studies and contends that physiological and anatomical high risk indications have not been universally supported in literature. # CMS Response The existence of general societal consensus, alone, without clearly supportive clinical evidence is not sufficient to establish that CAS is reasonable and necessary in anatomic high risk patients. #### **Evidence Review** Iyer et al., 2008 One commenter notes that while this study concludes that CAS is non-inferior to CEA based on a comparison of 30 day stroke, death and MI rates following CAS and historical CEA outcomes, the > 12% figure attributed to CEA historical outcomes is flawed because it actually includes CEA and CEA/CABG outcomes. Printed on 6/22/2012. Page 27 of 60 Chiam et al., 2008; Velez et al., 2008 One commenter notes that CMS does not cite these studies which describe CAS in the very elderly as safe and effective when properly selected and treated by experienced professionals. CMS Response CMS has reviewed these studies and included them in the evidence review section. BCBS Technology Assessment, 2007 One commenter asserts that CMS should not consider this TA in the evidence review because they "believe its findings are self-serving and biased against payment for new procedures." This commenter further states that the TA's "direct and major conflict of interest should make any governmental organization, but particularly CMS, wary of adopting the TEC findings." CMS Response The BCBS TA is a relevant and well prepared analysis of available evidence. CMS has historically reviewed BCBS TAs for previous coverage analyses
and will continue to do so when appropriate. Our decision not to expand coverage was not based solely on the TA but on the entire body of evidence reviewed in the analysis. US Preventive Services Task Force, 2007 This commenter also states that CMS' reference to the USPSTF recommendations is irrelevant because it does not apply to the high surgical risk population under consideration. This commenter asserts that "data-mixing raises concerns regarding CMS' capacity to provide balanced comparisons of homogenous patient subgroups in a non-biased fashion." CMS Response The general discussion of the USPSTF recommendations was included in the clinical guidelines section of the NCD for the purpose of providing information on the issue of carotid artery disease. We did not suggest that the USPSTF evaluation focused on the specific anatomic conditions relevant here. Yadav et al., 2004; Gurm et al., 2008 Printed on 6/22/2012. Page 28 of 60 CMS has examined the SAPPHIRE 30-day outcomes in previous reconsiderations and as the data are not broken down to specifically address anatomic high risk patients, the study was not revisited. Similarly, the SAPPHIRE 3-year results were not broken down to specifically address anatomic high risk patients. # Sidawy, Abstract, 2008 SVS meeting presentation One commenter references data from the SVS vascular registry which represents real world use of CAS and CEA with better outcomes seen in CEA patients. This commenter notes that the anatomic high risk subgroup has not been analyzed yet, however the Vascular Registry outcomes are similar to outcomes from CAPTURE, CAPTURE 2, EXACT, and BEACH. # CAPTURE; CAPTURE 2 One commenter references unpublished data from these studies to contend that studies on specific anatomic factors should not be required for expanded coverage because these data sets provide compelling conclusions. #### CMS Response In order to utilize data in the NCD process, CMS strongly prefers that the data be published or accepted for publication in a peer reviewed journal. At this time, the data cited above is unpublished and has not been accepted for publication in a peer reviewed journal. #### Rothman et al. One commenter references this study to support coverage of asymptomatic patients with \geq 80% stenosis who require surgical coronary revascularization or valve surgery because the risk of stroke or MI with combined surgical procedures is high. This study demonstrates high adverse event rates in these patients when they also undergo CEA. #### CMS Response The patient population referenced by this commenter is outside the scope of this analysis. #### Comments Without Evidence | Coverage | C | O١ | ve | ra | aa | e | |----------|---|----|----|----|----|---| |----------|---|----|----|----|----|---| Fourteen commenters agree with CMS' proposed decision to not expand coverage at this time. Eight commenters support no change in coverage until ongoing RCTs are completed, data are analyzed and follow up data are available. Two commenters assert that no change in coverage should occur until a trial involving medical therapy is completed. CMS Response CMS agrees with these comments and has decided to make no change in coverage. Two commenters request that CMS discontinue coverage for patients in industry sponsored non-scientific registries. #### CMS Response This analysis does not address repealing coverage for CAS patients who are currently covered in industry sponsored registries. Eight commenters assert that CMS should expand coverage as requested. Four commenters contend that coverage should be expanded to patients who have anatomic risk factors of previous CEA and neck irradiation. Six commenters argue that coverage is necessary because patients need access to an alternate intervention. Three commenters request that coverage be expanded for asymptomatic high surgical risk patients and one commenter recommends coverage for asymptomatic patients with < 80% stenosis. One commenter asserts that coverage should be extended for symptomatic high surgical risk patients but only when diagnosed by a neurologist. One commenter contends that CAS and CEA should be covered in the same patient populations and another commenter asserts that if CMS does not expand coverage as requested, it should rescind coverage of CEA in the same patient population. Two commenters assert that coverage should be extended to anatomic high risk patients with symptomatic carotid stenosis between 50-69%, and asymptomatic carotid stenosis \geq 80%, as originally requested. This commenter believes that anatomic risk factors should be defined as: 1) previous CEA with recurrent stenosis, 2) prior radiation therapy to the neck, 3) previous ablative neck surgery, 4) contralateral vocal cord palsy/laryngectomy, 5) tracheostomy stoma, 6) lesions above C2, and 7) lesions below the clavicle. Another commenter contends that coverage should be expanded to the same patient population but defines anatomic risk factors based upon professional society consensus. This commenter states that absolute consensus appears to exist for 1) previous CEA with recurrent stenosis, 2) prior radiation therapy to the neck, 3) previous ablative neck surgery, 4) lesions below the clavicle, 5) contralateral vocal cord palsy/laryngectomy, 6) tracheostomy stoma; and most societies agree with 1) lesions above C2, and 2) contralateral occlusion. Another commenter also supports expanded coverage for the same patient population but defines anatomic risk factors as: 1) previous CEA with recurrent stenosis, 2) prior ipsilateral radiation therapy to neck with permanent skin changes, 3) previous ablative neck surgery, 4) common carotid artery stenosis below the clavicle, 5) contralateral vocal cord paralysis, and 6) presence of tracheostomy stoma. This commenter asserts that the following factors should not be defined as anatomic high risk: 1) surgically inaccessible carotid lesion above C2, 2) contralateral internal carotid artery occlusion, 3) immobile neck, and 4) severe tandem lesions. This commenter also contends that physicians performing CAS on asymptomatic patients with \geq 80% stenosis must document 30-day stroke and death complication rates of \leq 3%. In addition, CAS in all patients over the age of 80 should not be covered. One commenter's support of expanded coverage is dependent on 1) peer reviewed data confirming acceptable CAS outcomes according to national benchmarks, and 2) a multispecialty facility accreditation process that requires facilities to meet national benchmarks for outcomes as a condition for accreditation and reimbursement by CMS for CAS procedures. This commenter supports an expansion of coverage, assuming the above criteria are met, for asymptomatic patients with $\geq 80\%$ carotid stenosis who have anatomic high risk factors defined as 1) previous carotid endarterectomy with recurrent stenosis, 2) prior radiation therapy or radical surgery to the ipsilateral neck, 3) surgically inaccessible lesion above C2 or a common carotid lesion below the clavicle, 4) contralateral vocal cord palsy, 5) presence of tracheostomy, and 6) contralateral internal carotid artery occlusion. # CMS Response CMS had determined that available data are insufficient to expand coverage to the requested patient population or any subpopulation thereof. CMS has also chosen not to expand upon the list of anatomic high risk factors beyond those included in the list of high surgical risk factors established in previous analyses. Despite the contention that specialty societies are in agreement over the definition for anatomic risk factors, as shown above, there are still variations in the definitions presented. More importantly, because we have determined not to expand coverage, establishing a final list of anatomic high risk factors is unnecessary. #### **Specialty Society Agreement** In addition to comments regarding agreement on anatomic high risk factor definitions presented above, one commenter states that CMS is incorrect in saying no clear society agreement on anatomic high risk factors exists. This commenter also asserts that CMS is inconsistent in the weight with which it has considered specialty society recommendations and guidelines in the analysis as compared to previous analyses. As noted above, there are still variations between societies regarding acceptable definitions of anatomic high risk factors. We do not believe that we have been inconsistent in the weight with which we considered specialty society recommendations in this analysis as compared to previous analyses. The weight accorded to recommendations depends on the specific circumstances in light of the evidence in the record. In the absence of supporting data, CMS has previously released final decisions not representative of specialty society recommendations or requests, i.e. the third reconsideration of this policy available at http://www.cms.hhs.gov/mcd/viewdecisionmemo.asp?id=194. #### **Evidence Review** One commenter asserts that data has shown CAS and CEA to be equivalent, one commenter notes that the body of evidence supporting CAS is very large and another commenter references a lack of quality data supporting CAS. One commenter contends that more evidence on CAS is needed and another commenter states that CAS in patients age 80 and older should be more closely examined. #### CMS Response CMS had determined that available data are insufficient to expand coverage to the requested patient population. CMS is not altering coverage for patients age 80 and older in this analysis. One commenter contends that CMS should not require data to be peer reviewed and published in order to consider it in an NCD and that it is reasonable to base coverage on real world data because RCTs of high risk populations are rarely conducted due to concerns regarding the ability to achieve equipoise. One commenter
asserts that CMS should not require CAS to be superior to CEA in order to consider it a valid treatment. This commenter also states that the anatomic high risk patient population is too small to serve as the subject of any single study and the absence of such a study should not be a reason to not expand coverage. # CMS Response CMS strongly prefers data to be published or accepted for publication in a peer reviewed journal to be utilized in formulating an NCD. CMS has not required an RCT or superiority trial for this small patient population, however data must be presented (and preferably published or accepted for publication in a peer reviewed journal) that demonstrates that the AHA 3% and 6% thresholds are met. One commenter asserts that CMS does not address literature describing anatomic high risk patients as having higher CEA complication rates or the conclusions of publications that support expanded coverage due to risks associated with CEA. In the absence of compelling supportive evidence that CAS in anatomic high risk patients is reasonable and necessary, poor outcomes following CEA are not sufficient for expanding coverage. #### **Additional Concerns** One commenter suggests that CMS has misunderstood the issue of unfavorable anatomic features and erred in asking whether anatomic factors would make CEA contraindicated. This commenter contends that it is not necessary for CEA to be contraindicated to make it more difficult or place the patient at higher risk. This commenter states that patients with medical comorbidities and adverse anatomic features do not need CEA to be contraindicated to warrant consideration of CAS. CMS Response CMS disagrees with this comment. One commenter contends that the PDM assumes that medical therapy is an appropriate treatment option, however anatomic high risk patients are not always prescribed medication nor is it always appropriate to prescribe medication. Another commenter cites an inconsistency in definitions and poor patient compliance as problems with medical therapy. #### CMS Response CMS understands concerns regarding the use of medical therapy, however these concerns do not outweigh the lack of supportive evidence for expanding coverage to anatomic high risk patients. CMS also notes that very limited data exists regarding modern medical therapy in this patient population as well as all patients with carotid artery disease and to ultimately serve Medicare beneficiaries, and all patients, best, the development of evidence on this least invasive treatment option is of the utmost importance. Three commenters contend that only a surgeon should determine whether lesions are operable. One commenter asserts that CAS must be performed in qualified facilities by qualified physicians. One commenter states that CAS should be covered only when the treating physician can provide both CAS and CEA and two commenters assert that reimbursement should be based on outcomes. Two commenters contend that CAS should be covered without the use of embolic protection devices. One commenter asserts that an expansion of coverage is being roadblocked by politics and turf. One commenter states that those who call for an expansion of coverage have financial interests and do not consider patients' best interests. We understand that various groups have competing views on this particular NCD. Our decision is not based on a desire to support one group or another, but, rather is driven by the evidence in the record. ## **VIII. CMS Analysis** National coverage determinations (NCDs) are determinations by the Secretary with respect to whether or not a particular item or service is covered nationally under title XVIII of the Social Security Act $\S1869(f)(1)(B)$. In order to be covered by Medicare, an item or service must fall within one or more benefit categories contained within Part A or Part B, and must not be otherwise excluded from coverage. Moreover, with limited exceptions, the expenses incurred for items or services must be "reasonable and necessary for the diagnosis or treatment of illness or injury or to improve the functioning of a malformed body member" ($\S1862(a)(1)(A)$). The evidence base for carotid artery stenting continues to be of lower quality. There are a small number of randomized trials comparing CAS and CEA which have limited quality as we have discussed in prior decision memoranda. Acknowledging that existing case series and reviews may be markedly limited by selection bias, it is nonetheless informative in highlighting several other differences between procedures for carotid stenosis. We were asked in this NCD request to consider expanding coverage to Medicare patients with carotid artery disease who are at increased risk of death or stroke and have anatomic factors that limit the use of CEA. We evaluated the proposed anatomic factors individually for their role as a contraindication to CEA and collectively to determine if evidence demonstrates that patients in the anatomic risk group meet the established outcome benchmarks according to symptomatic status. The requestor submitted a letter with 3 references and an unpublished analysis of anatomic factors in support of their request. In reviewing the published evidence since our previous decision memorandum and the release of the 2007 BCBS TEC assessment, CMS found no comparative studies statistically powered to draw any conclusion regarding the impact of any intervention in patients with the requestors' group of anatomic factors upon patients' risk of stroke or death. BCBS noted limited evidence and a "clinical rationale" for the anatomic risk factors. CMS analyzed 17 observational studies and one industry-sponsored postmarket registry. In reviewing these studies, CMS focused broadly on unfavorable anatomic changes which are problematic for CEA but have evidence of beneficial and improved results with CAS. Is the evidence sufficient to conclude that defined anatomic factors can be identified among patients with carotid stenosis that make carotid endarterectomy contraindicated? We were asked to clarify which anatomic factors should be identified as high risk for CEA. The requestor asked that the following lesions be identified: - Previous CEA with recurrent stenosis, - Prior radiation therapy to neck, - Previous ablative neck surgery (e.g., radical neck dissection, laryngectomy), - Surgically inaccessible carotid lesion located above cervical vertebra C2, - Common carotid artery lesion below the clavicle, - Contralateral vocal cord palsy, - Presence of tracheostomy stoma, - Contralateral internal carotid artery occlusion, - Immobile neck, and - Severe tandem lesions. In our 2005 decision, we included 3 anatomic factors in a list of significant comorbid conditions that may make persons poor candidates for CEA: contralateral carotid occlusion, previous CEA with recurrent stenosis and prior radiation treatment to the neck. We also allowed for the use of other anatomic factors that might have been used in prior CAS studies, basing this decision on the evidence available at that time. We reviewed available evidence on the exclusions from previous studies of CEA in that memorandum as well. In our 2007 decision memorandum, we referenced the high risk criteria cited by Bates et al., which added 4 anatomical criteria in their clinical expert consensus document: lesion at C-2 or higher, lesion below clavicle, contralateral laryngeal nerve palsy and tracheostoma. This paper was a consensus from clinical experts representing ACC, SCAI, SVMB, SIR and ASITN. We found limited literature comparing outcomes of CEA or CAS in patients with the anatomic risk factors on the requestor's list and were unable to find a list generally accepted by all specialty societies. For some of the lesions, we found conflicting conclusions regarding the appropriateness and/or safety of performing CAS in these patients. We therefore asked for and received recommendations from numerous societies. The professional society commenters generally supported the inclusion of previous CEA with recurrent stenosis, prior radiation therapy to neck, previous radical surgery to the same side of the neck, contralateral vocal cord palsy, and presence of tracheostomy stoma as anatomic factors that lead to high surgical risk. However, there is not complete consensus on a complete list. Thus, we have determined that available evidence is not sufficient to definitively identify and designate anatomic factors that make CEA contraindicated in patients with such factors beyond those already identified in previous NCDs. The level of evidence and conclusions derived from this evidence do not clearly support or refute the benefit and/or safety and effectiveness of CAS or the danger of performing CEA in patients with these anatomic factors. Given the inconclusive evidence available, CMS has decided not to modify its current NCD discussion of anatomic risk factors. Of the requested anatomic risk factors, the current NCD includes previous CEA with recurrent stenosis, prior radiation treatment to the neck, contralateral carotid occlusion and "other conditions that were used to determine patients at high risk for CEA in the prior carotid artery stenting trials and studies, such as ARCHER, CABERNET, SAPPHIRE, BEACH, and MAVERIC II" which may include other factors listed by the requestor. Is the evidence sufficient to conclude that PTA with carotid artery stenting improves health outcomes for patients in whom CEA surgery is contraindicated due to anatomic factors with either (a) symptomatic carotid artery stenosis $\geq 50\%$ or (b) asymptomatic carotid artery stenosis $\geq 80\%$? The June 2007, BCBS technology assessment concluded that carotid artery angioplasty and stenting with or without EPDs for patients with carotid artery stenosis did not meet TEC criteria. The TEC noted that stroke/death rates following CAS surpassed those established as clinically acceptable and associated with
overall net health benefit following CEA. While there was limited evidence and clinical rationale to suggest CAS may be beneficial in patients at increased anatomic risk (e.g., prior CEA, radiation therapy to neck, high lesion, spinal immobility, contralateral recurrent laryngeal nerve paralysis), the published evidence did not clearly differentiate outcomes for increased anatomic risk patients according to symptomatic status. BCBS TEC concluded there was insufficient evidence to draw conclusions regarding patients at increased anatomic risk. There were several case series of carotid artery stenting in patients with one or more anatomical factors as well as analyses of post-approval studies according to the high risk factors. Treatment of carotid artery stenosis in patients with prior neck irradiation has been addressed by Protack and colleagues (2007) and Eskandari who found that CAS can be safely performed in this group in small case series. Protack found poor longer-term outcomes of CAS in this group and suggested that "these patients require closer postoperative surveillance and raise the question of whether CAS is appropriate for carotid occlusive lesions caused by radiation arteritis" (Protack et al., 2007). The healthcare community has generally agreed that to be considered effective, procedures for carotid stenosis should have a periprocedural stroke/death rate of < 6% for symptomatic patients and < 3% for asymptomatic patients. These standards were developed for normal procedural risk patients. While there is dispute about the applicability of these values to patients who are at higher risk for CEA, CMS has used these criteria in previous decisions to evaluate carotid stenting outcomes and continues to consider them to be relevant. Higher procedure risk can occur from anatomical issues making surgery or stenting more risky or contraindicated, from medical comorbidities that increase the risk of death or stroke periprocedurally, or both. If the increased risk arises from an anatomical issue that makes CEA contraindicated, then one would expect that outcomes from CAS should not exceed the 3% and 6% outcomes referenced above. For those patients who have anatomical contraindications to CEA, we examined data to determine whether CAS in that patient group would result in outcomes that equal or exceed the 3% and 6% standards. We initially looked for RCTs and published prospective studies that would provide a higher level of evidence, but there were no published RCT data on this subgroup. As discussed above, the published evidence we reviewed was not stratified by anatomic factors and symptomatic status and was of limited applicability to this question. While unpublished data was provided to CMS by the study sponsor of three post approval studies (Capture, Capture 2 and Exact), the Agency gives this evidence little weight in our review. In order for such evidence to have more weight in our review and analysis, it must be published in a peer-reviewed journal. The unpublished data submitted to CMS suggests that stroke and death outcomes in symptomatic and asymptomatic patients who are at high risk for CEA due to anatomic factors are approaching, and in some cases even lower than, the 6% and 3% benchmarks, respectively. However, the data provided did not consistently demonstrate outcomes meeting these benchmarks, nor did they sufficiently identify or address each anatomic factor separately. CMS expects, based upon the trends demonstrated by the unpublished data provided, that outcomes for both symptomatic and asymptomatic patients at high risk for CEA due to anatomic factors will continue to improve. In order to consider expanding coverage to these patients, not only must outcomes be equal to or lower than the 6% and 3% benchmarks, but the data through which such outcomes are demonstrated should be published in a peer-reviewed journal. A peer-reviewed publication is an important element in the coverage determination process. It provides an opportunity for the public to review the study data and to consider our interpretation of the study results and conclusions based on the study results. CMS does not ordinarily base coverage determinations on unpublished evidence but will consider future expansions of this policy if additional adequate, peer-reviewed evidence is published. In summary, while available evidence suggests the potential for improved health outcomes in patients who are at high risk for CEA due to anatomic factors, currently published data are not sufficient to expand coverage beyond the currently covered patient populations. Due to the lower quality and limited quantity of published, peer-reviewed evidence available addressing the patient populations under consideration, CMS has determined that an expansion of coverage is not reasonable and necessary and has decided to make no changes to the NCD. ### Patients > 80 years of age In our previous decision memoranda, we noted mounting evidence that the rate of death, stroke and MI after CAS is higher among patients who are \geq 80 years of age compared with patients < 80 years. Lam et al. (2007), Sayeed et al. (2008), and Iyer et al. (2008) provide additional evidence that adverse outcomes in this age group are substantially higher. SVS advocated that CMS "rescind existing coverage for CAS in beneficiaries of age 80 years or older, and that CMS not extend coverage for asymptomatic patients or for symptomatic 50-69% stenosis patients if they are age 80 years or older." The consistency of these findings across the trials and studies, observed in both symptomatic and asymptomatic patients, creates concerns for the safety of older patients undergoing CAS. Although we have not restricted coverage according to age, we continue to have concern about proper patient selection to optimize outcomes. #### **Randomized Clinical Trials of CAS** Cognizant of the strengths and weaknesses of observational and experimental approaches, CMS believes in the importance of completing the ongoing RCTs and encourages future RCTs with medical therapy comparator arms. Such studies have the greatest potential for improving the carotid stenting community's knowledge about comparative therapies for carotid artery disease, and should provide scientifically valid evidence regarding the risks and benefits directly attributable to medical therapy with or without adjunctive surgical and endovascular interventions. This evidence is particularly needed to evaluate the treatment of patients not at high risk for CEA. #### **Registries** During our analysis, CMS received a supplemental request to mandate the use of formal CAS registries by all facilities approved by CMS to perform CAS. While we had hoped to address this request during this reconsideration period, we have determined that such a request must be addressed in a separate reconsideration of this policy. #### Conclusion As we concluded in our prior decision memorandum, "for CAS to be considered an alternative to CEA and improve health outcomes for asymptomatic patients with asymptomatic stenosis > 80%, the perioperative morbidity and mortality rates should be less than 3%." For symptomatic patients with stenosis >50%, the benchmark is less than 6% death and stroke within 30 days of the procedure. The body of randomized trials and post approval studies does not demonstrate that CAS can be performed at that level. This is particularly concerning for asymptomatic patients since these patients do not have symptoms by definition and may be exposed to risks from the procedure. This continues to highlight the need for a randomized trial comparing CAS with optimal medical therapy. As a result of the inadequate peer-reviewed, published evidence, CMS has determined that expanding coverage is not reasonable and necessary and is making no changes to the NCD. We are aware of other data that has yet to be published and strongly urge that publication at the soonest possible time. We will work with any requestor as soon as that data is published to determine the need for an expedited review and reconsideration. ## IX. Decision The Centers for Medicare and Medicaid Services (CMS) has decided to make no changes to the national coverage determination (NCD) for percutaneous transluminal angioplasty (PTA) of the carotid artery concurrent with stenting (Medicare NCD Manual 20.7). The NCD for PTA of the carotid artery concurrent with stenting continues to provide coverage for the specific patient populations under specific conditions as described below. 1. Patients who are at high risk for carotid endarterectomy (CEA) and who also have symptomatic carotid artery stenosis > 70%. Coverage is limited to procedures performed using FDA approved carotid artery stenting systems and embolic protection devices; 2. Patients who are at high risk for CEA and have symptomatic carotid artery stenosis between 50% and 70%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7B3); | ≺ | | |---|--| | | | CAS. Patients who are at high risk for CEA and have asymptomatic carotid artery stenosis > 80%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7B3). CAS is only covered when used with an embolic protection device and is, therefore, not covered if deployment of the distal embolic protection device is not technically possible. CAS procedures performed on symptomatic patients at high risk for CEA with ≥ 70% stenosis must be performed in facilities approved by CMS to perform The complete NCD language can be found in Appendix B of this
decision memorandum. 1 Factors leading to increased anatomic risk in the BCBS TEC assessment are defined as prior CEA, radiation therapy to neck, high lesion, spinal immobility, and contralateral recurrent laryngeal nerve paralysis. 2http://www.bcbs.com/blueresources/tec/vols/22/22_01.pdf/p> ³ http://www.ahrq.gov/clinic/uspstf/uspsacas.htm 4 http://www.ahrq.gov/clinic/uspstf/gradespost.htm#drecdrec # Appendix A: General Methodological Principles of Study Design When making national coverage determinations, CMS evaluates relevant clinical evidence to determine whether or not the evidence is of sufficient quality to support a finding that an item or service falling within a benefit category is reasonable and necessary for the diagnosis or treatment of illness or injury or to improve the functioning of a malformed body member. The critical appraisal of the evidence enables us to determine whether: 1) the specific assessment questions can be answered conclusively; and 2) the intervention will improve health outcomes for patients. An improved health outcome is one of several considerations in determining whether an item or service is reasonable and necessary. CMS normally divides the assessment of clinical evidence into three stages: 1) the quality of the individual studies; 2) the relevance of findings from individual studies to the Medicare population; and 3) overarching conclusions that can be drawn from the body of the evidence on the direction and magnitude of the intervention's risks and benefits. The issues presented here represent a broad discussion of the issues we consider when reviewing clinical evidence. However, it should be noted that each coverage determination has unique methodological aspects. # 1. Assessing Individual Studies Methodologists have developed criteria to determine weaknesses and strengths of clinical research. Strength of evidence generally refers to: 1) the scientific validity underlying study findings regarding causal relationships between health care interventions and health outcomes; and 2) the reduction of bias. In general, some of the methodological attributes associated with stronger evidence include those listed below: - Use of randomization (allocation of patients to either intervention or control group) in order to minimize bias. - Use of contemporaneous control groups (rather than historical controls) in order to ensure comparability between the intervention and control groups. - Prospective (rather than retrospective) studies to ensure a more thorough and systematical assessment of factors related to outcomes. - Larger sample sizes in studies to help ensure adequate numbers of patients are enrolled to demonstrate both statistically significant as well as clinically significant outcomes that can be extrapolated to the Medicare population. Sample size should be large enough to make chance an unlikely explanation for what was found. - Masking (blinding) to ensure patients and investigators do not know to which group patients were assigned (intervention or control). This is important especially in subjective outcomes, such as pain or quality of life, where enthusiasm and psychological factors may lead to an improved perceived outcome by either the patient or assessor. Regardless of whether the design of a study is a randomized controlled trial, a non-randomized controlled trial, a cohort study or a case-control study, the primary criterion for methodological strength or quality is the extent to which differences between intervention and control groups can be attributed to the intervention studied. This is known as internal validity. Various types of bias can undermine internal validity. These include: - Different characteristics between patients participating and those theoretically eligible for study but not participating (selection bias) - Co-interventions or provision of care apart from the intervention under evaluation (confounding) - Differential assessment of outcome (detection bias) - Occurrence and reporting of patients who do not complete the study (attrition bias) In principle, rankings of research design have been based on the ability of each study design category to minimize these biases. A randomized controlled trial minimizes systematic bias (in theory) by selecting a sample of participants from a particular population and allocating them randomly to the intervention and control groups. Thus, randomized controlled studies have been typically assigned the greatest strength, followed by non-randomized clinical trials and controlled observational studies. The following is a representative list of study designs (some of which have alternative names) ranked from most to least methodologically rigorous in their potential ability to minimize systematic bias: - Randomized controlled trials - Non-randomized controlled trials - Prospective cohort studies - Retrospective case control studies - Cross-sectional studies - Surveillance studies (e.g., using registries or surveys) - Consecutive case series - Single case reports When there are merely associations but not causal relationships between a study's variables and outcomes, it is important not to draw causal inferences. Confounding refers to independent variables that systematically vary with the causal variable. This distorts measurement of the outcome of interest because its effect size is mixed with the effects of other extraneous factors. For observational, and in some cases randomized controlled trials, the method in which confounding factors are handled (either through stratification or appropriate statistical modeling) are of particular concern. For example, in order to interpret and generalize conclusions to our population of Medicare patients, it may be necessary for studies to match or stratify their intervention and control groups by patient age or co-morbidities. Methodological strength is, therefore, a multidimensional concept that relates to the design, implementation and analysis of a clinical study. In addition, thorough documentation of the conduct of the research, particularly study's selection criteria, rate of attrition and process for data collection, is essential for CMS to adequately assess the evidence. ## 2. Generalizability of Clinical Evidence to the Medicare Population The applicability of the results of a study to other populations, settings, treatment regimens, and outcomes assessed is known as external validity. Even well-designed and well-conducted trials may not supply the evidence needed if the results of a study are not applicable to the Medicare population. Evidence that provides accurate information about a population or setting not well represented in the Medicare program would be considered but would suffer from limited generalizability. The extent to which the results of a trial are applicable to other circumstances is often a matter of judgment that depends on specific study characteristics, primarily the patient population studied (age, sex, severity of disease, and presence of co-morbidities) and the care setting (primary to tertiary level of care, as well as the experience and specialization of the care provider). Additional relevant variables are treatment regimens (dosage, timing, and route of administration), co-interventions or concomitant therapies, and type of outcome and length of follow -up. The level of care and the experience of the providers in the study are other crucial elements in assessing a study's external validity. Trial participants in an academic medical center may receive more or different attention than is typically available in non-tertiary settings. For example, an investigator's lengthy and detailed explanations of the potential benefits of the intervention and/or the use of new equipment provided to the academic center by the study sponsor may raise doubts about the applicability of study findings to community practice. Given the evidence available in the research literature, some degree of generalization about an intervention's potential benefits and harms is invariably required in making coverage decisions for the Medicare population. Conditions that assist us in making reasonable generalizations are biologic plausibility, similarities between the populations studied and Medicare patients (age, sex, ethnicity and clinical presentation), and similarities of the intervention studied to those that would be routinely available in community practice. A study's selected outcomes are an important consideration in generalizing available clinical evidence to Medicare coverage determinations because one of the goals of our determination process is to assess health outcomes. We are interested in the results of changed patient management not just altered management. These outcomes include resultant risks and benefits such as increased or decreased morbidity and mortality. In order to make this determination, it is often necessary to evaluate whether the strength of the evidence is adequate to draw conclusions about the direction and magnitude of each individual outcome relevant to the intervention under study. In addition, it is important that an intervention's benefits are clinically significant and durable, rather than marginal or short-lived. Patients who are at high risk for CEA and have symptomatic carotid artery stenosis between 50% and 70%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201) as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1) or in accordance with the NCD on carotid artery stenting (CAS) post-approval studies (Medicare NCD Manual 20.7B); Patients who are at high risk for CEA and have asymptomatic carotid artery stenosis ≥ 80%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201) as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1) or in accordance with the NCD on CAS post- approval studies (Medicare NCD Manual 20.7B). Coverage
is limited to procedures performed using FDA approved carotid artery stents and embolic protection devices. The use of a distal embolic protection device is required. If deployment of the distal embolic protection device is not technically possible, then the procedure should be aborted given the risks of CAS without distal embolic protection. Patients at high risk for CEA are defined as having significant comorbidities and/or anatomic risk factors (i.e., recurrent stenosis and/or previous radical neck dissection), and would be poor candidates for CEA. Significant comorbid conditions include but are not limited to: congestive heart failure (CHF) class III/IV; - left ventricular ejection fraction (LVEF) < 30%; - unstable angina; - contralateral carotid occlusion; - recent myocardial infarction (MI); - previous CEA with recurrent stenosis; - prior radiation treatment to the neck; and - other conditions that were used to determine patients at high risk for CEA in the prior carotid artery stenting trials and studies, such as ARCHER, CABERNET, SAPPHIRE, BEACH, and MAVERIC II. Emergency management equipment and systems must be readily available in the interventional suite such as resuscitation equipment, a defibrillator, vasoactive and antiarrhythmic drugs, endotracheal intubation capability, and anesthesia support. Each institution shall have a clearly delineated program for granting carotid stent privileges and for monitoring the quality of the individual interventionalists and the program as a whole. The oversight committee for this program shall be empowered to identify the minimum case volume for an operator to maintain privileges, as well as the (risk-adjusted) threshold for complications that the institution will allow before suspending privileges or instituting measures for remediation. Committees are encouraged to apply published standards from national specialty societies recognized by the American Board of Medical Specialties to determine appropriate physician qualifications. Examples of standards and clinical competence guidelines include those published in the December 2004 edition of the American Journal of Neuroradiology, and those published in the August 18, 2004 Journal of the American College of Cardiology. To continue to receive Medicare payment for CAS under this decision, the facility or a contractor to the facility must collect data on all carotid artery stenting procedures done at that particular facility. This data must be analyzed routinely to ensure patient safety. This data must be made available to CMS upon request. The interval for data analysis will be determined by the facility but shall not be less frequent than every 6 months. Since there currently is no recognized entity that evaluates CAS facilities, CMS has established a mechanism for evaluating facilities. Facilities must provide written documentation to CMS that the facility meets one of the following: - 1. The facility was an FDA approved site that enrolled patients in prior CAS IDE trials, such as SAPPHIRE, and ARCHER; - 2. The facility is an FDA approved site that is participating and enrolling patients in ongoing CAS IDE trials, such as CREST; - 3. The facility is an FDA approved site for one or more FDA post approval studies; or - 4. The facility has provided a written affidavit to CMS attesting that the facility has met the minimum facility standards. This should be sent to: Director, Coverage and Analysis Group 7500 Security Boulevard, Mailstop C1-09-06 Baltimore, MD 21244. The letter must include the following information: Facility's name and complete address; Facility's Medicare provider number; Point-of-contact for questions with telephone number; Discussion of how each standard has been met by the hospital; Mechanism of data collection of CAS procedures; and Signature of a senior facility administrative official. Printed on 6/22/2012. Page 46 of 60 | A list of certified facilities will be made available and viewable at: http://www.cms.hhs.gov/coverage/carotid-stent-facilities.asp. In addition, CMS will publish a list of approved facilities in the Federal Register. | | |---|----| | Facilities must recertify every two (2) years in order to maintain Medicare coverage of CAS procedures. Recertification will occur when the facility documents that and describes how it continues to meet the CMS standards. | | | The process for recertification is as follows: | | | At 23 months after initial certification: | | | Submission of a letter to CMS stating how the facility continues to meet the minimum facility standards a
listed above. | ìS | | At 27 months after initial certification: | | | Submission of required data elements for all CAS procedures performed on patients during the previous two (2) years of certification. Data elements: | | | Patients' Medicare identification number if a Medicare beneficiary; Patients' date of birth; Date of procedure; Does the patient meet high surgical risk criteria (defined below)? | | | Age ≥ 80; Recent (< 30 days) Myocardial Infarction (MI); Left Ventricle Ejection Fraction (LVEF) < 30%; Contralateral carotid occlusion; | | New York Heart Association (NYHA) Class III or IV congestive heart failure; Unstable angina: Canadian Cardiovascular Society (CCS) Class III/IV; Renal failure: end stage renal disease on dialysis; Common Carotid Artery (CCA) lesion(s) below clavicle; Printed on 6/22/2012. Page 47 of 60 Severe chronic lung disease; Previous neck radiation; - High cervical Internal Carotid Artery (ICA) lesion(s); - Restenosis of prior carotid endarterectomy (CEA); - Tracheostomy; - Contralateral laryngeal nerve palsy. Is the patient symptomatic (defined below)? - Carotid Transient Ischemic Attack (TIA): distinct focal neurologic dysfunction persisting less than 24 hours; - Non-disabling stroke: Modified Rankin Scale < 3 with symptoms for 24 hours or more; - Transient monocular blindness: amaurosis fugax. Modified Rankin Scale score if the patient experienced a stroke; % stenosis of stented lesion(s) by angiography; Was embolic protection used? Were there any complications during hospitalization (defined below)? - All stroke: an ischemic neurologic deficit that persisted more than 24 hours; - MI; - All death. Recertification is effective for two (2) additional years during which facilities will be required to submit the requested data every April 1 and October 1. CMS will consider the approval of national carotid artery stenting registries that provide CMS with a comprehensive overview of the registry and its capabilities, and the manner in which the registry meets CMS data collection and evaluation requirements. Specific standards for CMS approval are listed below. Facilities enrolled in a CMS approved national carotid artery stenting registry will automatically meet the data collection standards required for initial and continued facility certification. Hospitals' contracts with an approved registry may include authority for the registry to submit required data to CMS for the hospital. A list of approved registries will be available on the CMS coverage website. National Registries As noted above, CMS will approve national registries developed by professional societies and other organizations and allow these entities to collect and submit data to CMS on behalf of participating facilities to meet facility certification and recertification requirements. To be eligible to perform these functions and become a CMS approved registry, the national registry, at a minimum, must be able to: - 1. Enroll facilities in every US state and territory; - 2. Assure data confidentiality and compliance with HIPAA; Printed on 6/22/2012. Page 48 of 60 | Collect the required CMS data elements as listed in the above section; Assure data quality and data completeness; Address deficiencies in the facility data collection, quality and submission; Validate the data submitted by facilities as needed; Track long term outcomes such as stroke and death; Conduct data analyses and produce facility specific data reports and summaries; | |--| | Submit data to CMS on behalf of the individual facilities; Provide quarterly reports to CMS on facilities that do not meet or no longer meet the CMS facility certification and recertification requirements pertaining to data collection and analysis. | | Registries wishing to receive this designation from CMS must submit evidence that they meet or exceed our standards. Though the registry requirements pertain to CAS, CMS strongly encourages all national registries to establish a similar mechanism to collect comparable data on CEA. Having both CAS and CEA data will help answe questions about carotid revascularization, in general, in the Medicare population. | | CAS for patients who are not at high risk for CEA remains covered only in FDA-approved Category B IDE clinical trials under 42 CFR 405.201. | | CMS has determined that PTA of the carotid artery concurrent with the placement of an FDA-approved carotid stent is not reasonable and necessary for all other patients. | | Appendix C: References Cited by Commenters | | AHA Council on Stroke
guidelines for endarterectomy. Stroke 1995;26:188-201. | | Ansell BJ. Not getting to goal: the cost of noncompliance. J Manag Care Pharm 2008;14(6)(suppl S-b)S9-S15. | | ARCHeR Trial Information: RX ACCULINK™ Carotid Stent System Information for Prescribers, EL2042610 (8/18/04), Printed on 2/28/07. | | Velez C, White C, Reilly J, et al. Carotid artery stent placement is safe in the very elderly (≥ 80 years).
Catheterization and Cardiovascular Interventions 2008 Aug;72:303-308. | |--| | Wennberg DE, et al. Variation in Carotid Endarterectomy Mortality in the Medicare Population: Trial Hospitals,
Volume, and Patient Characteristics. JAMA 1998;279:1278-1281. | | White CJ, et al. Carotid Stenting with Distal Protection in High Surgical Risk Patients: The BEACH Trial 30 Day
Results. CCI 2006;67:503-512. | | Yadav JS, et al. Protected Carotid-Artery Stenting versus Endarterectomy in High-Risk Patients. N Engl J Med 2004;351:1493-1501. | | Appendix D: Study Design | | CMS recommends that RCTs or other clinical research studies enrolling Medicare patients specify and publish detailed description of the following: | | • Study purpose and hypothesis; | | Inclusion and exclusion criteria fully describing the interventional and medical control arms; | | Use of (or investigation to establish, clarify or improve) standardized diagnostic criteria, uniform operational definitions and validated measurement techniques for patient selection, methods and outcomes; | | • | | |--------------|---| | ι | Jse of blinded outcome assessors; | | • | Dates and explanations for all study protocol changes; | | •
[| Design phase and analytic strategies to minimize mixed effects of confounding and/or concurrent provision of other therapies or co-treatments; | | •
F | How adequate statistical power has been assured to enable drawing clinically meaningful conclusions regarding the study's pre-specified primary and secondary endpoints; | | | How results are to be generalized to the general Medicare population and affected Medicare subpopulations; and | | •
N
fi | Method and timing for reporting of peer-reviewed preliminary results plus public release and publication of inal research results to inform patients and providers about what has been learned. | | Back to | <u>Top</u> | | Bibl | liography | | http://w | www.ahrq.gov/clinic/uspstf/uspsacas.htm (USPSTF Screening for CAS, December 2007) | | http://w | www.ahrq.gov/clinic/uspstf/gradespost.htm#drecdrec (USPSTF ratings system and practice suggestions) | | http://w | www.bcbs.com/blueresources/tec/vols/22/22_01.pdf (BCBS TEC, June 2007) | | Samuelson R, Yamamoto J, Levy E, et al. The argument to support broader application of extracranial carotid artery stent technology. Circulation 2007 Oct 2;116(14):1602-10; discussion 1610. | |--| | Sayeed S, Stanziale S, Wholey M, et al. Angiographic lesion characteristics can predict adverse outcomes after
carotid artery stenting. Journal of Vascular Surgery 2008;47(1):81-87. | | Schnaudigel S, Gröschel K, Pilgram S, et al. New brain lesions after carotid stenting versus carotid endarterectomy: a systematic review of the literature. Stroke 2008 Jun;39(6):1911-9. Epub 2008 Apr 3. | | Velez C, White C, Reilly J, et al. Carotid artery stent placement is safe in the very elderly (≥ 80 years). Catheterization and Cardiovascular Interventions 2008 Aug;72:303-308. Back to Top | | | | |